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ABSTRACT 

 

In order to facilitate the interpretation of experimental data, a micromechanical modeling 

procedure is developed to predict the viscoelastic properties of a graphite nanoplatelet/epoxy 

composite as a function of volume fraction and nanoplatelet diameter.  The predicted storage and 

loss moduli for the composite are compared to measured values from the same material using 

three test methods; Dynamical Mechanical Analysis, nanoindentation, and quasi-static tensile 

tests.  In most cases, the model and experiments indicate that for increasing volume fractions of 

nanoplatelets, both the storage and loss moduli increase.  Also, the results indicate that for 

nanoplatelet sizes above 15 µm, nanoindentation is capable of measuring properties of individual 

constituents of a composite system. Comparison of the predicted values to the measured data 

helps illustrate the relative similarities and differences between the bulk and local measurement 

techniques. 
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NOMENCLATURE 

ai  Principle half-axes of the inclusion 

A   Projected contact area 
*
pA     Complex dilute strain-concentration tensor  

cp   Volume fraction of nanoplatelets 

cm   Volume fraction of matrix 

C*   Complex stiffness tensor of composite 
*
pC     Complex stiffness tensor of nanoplatelets 

*
mC      Complex stiffness tensor of matrix 

′C   Storage tensor of the composite 

′′C    Loss tensor of the composite 

D   Damping of contact 

E′   Storage modulus 

E′′   Loss modulus 

G′   Storage shear modulus 

G′′   Loss shear modulus 

I   Identity tensor 

Ji, Jij   Eshelby tensor parameters 

P   Applied nanoindenter force 

S   Contact stiffness 

S*   Complex Eshelby tensor   

T  Arbitrary four-order tensor 
tan δ  Loss tangent 

xi   Nanoplatelet coordinate system 

β   Tip shape constant 

δij   Kronecker delta 

κ, µ  Orientation averaging parameters 

ν*   Complex Poisson’s ratio 

ω  Harmonic frequency of nanoindenter tip 
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INTRODUCTION 

 

In recent years, nanostructured materials have spurred considerable interest in the materials 

research community partly because of their potential for large gains in mechanical properties 

relative to current materials used for aerospace applications.  For example, graphite 

nanoplatelet/polymer composites have been a focus of recent development (Chen, Wu, Weng, 

2001; Fukushima and Drzal, 2002; Pan, Yu, Ou, 2000; Thongruang, Balik and Spontak, 2002; 

Yalcin, Valladares and Cakmak, 2003; Zheng, Wu, Wang, 2004) for use as low-cost, lightweight 

materials with mechanical properties potentially superior to those of pure polymers without the 

penalty of increased weight.  In order to facilitate the development of these new materials for 

aerospace applications, modeling and characterization procedures must be developed that 

address the unique characteristics of nanostructured materials and provide a multi-scale approach 

that spans the nano- to macro-length scales. 

 

Recently, experiments were conducted to determine the viscoelastic properties of a new 

nanostructured material: graphite nanoplatelet/epoxy composites (Chasiotis, Chen and Odegard, 

2004).  The volume fractions and sizes of the nanoplatelets in the test specimens made from this 

material were varied in a systematic manner to facilitate the exploration of intrinsic material 

structure on the engineering properties of the composite.   To determine these properties, 

experimental tests were performed that included dynamic nanoindentation, Dynamical 

Mechanical Analysis (DMA), and uniaxial tensile testing.  Since these tests were conducted over 

a wide range of length scales, if follows that the measured elastic and viscoelastic properties for 

each test must be interpreted based on the relative length scale of the test method and scale of the 

heterogeneity of the material.  However, the correct interpretation and comparison of the 

experimental data can be difficult without the adequate models to aid in evaluation of properties 

and behavior. 

 

The objective of the current paper is to develop a viscoelastic modeling procedure to facilitate 

the interpretation of experimental data and add insight into the measured time-dependent 

behavior of nano-particle reinforced composites.  A brief summary of the material and test 

methods is provided followed by a detailed explanation of the viscoelastic modeling procedure.  
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The predicted viscoelastic properties from the model are compared to the experimentally 

obtained properties and the results of this comparison are used to help demonstrate the strengths 

and limitations of the test methods. 

 

MATERIALS 

 

In this study, the viscoelastic properties of five materials were examined - four composite 

materials made from graphite nanoplatelet/epoxy, and one homogeneous material made from 

unreinforced neat epoxy.  All five materials used the same commercial epoxy system. The four 

composite materials had exfoliated graphite nanoplatelets of two different average diameters, 1 

and 15 µm, for two different nanoplatelet volume fractions, 0.5% and 3.0%.  All the test 

specimens were fabricated at Michigan State University, and further details on the material, 

fabrication methods, and initial characterization can be found elsewhere (Fukushima and Drzal, 

2002).  The variations in volume fraction and platelet size created distinct differences in the 

relative structure of the composite materials. As an illustrative example of the material structure, 

Figures 1 and 2 show an Atomic Force Microscope (AFM) image of the 0.5% nanoplatelet 

volume fraction composites with 1 µm and 15 µm diameter nanoplatelets, respectively.  Figures 

3 and 4 show similar images of the 3.0% nanoplatelet volume fraction composites with 1 µm and 

15 µm diameter nanoplatelets, respectively.  From Figures 1-4, it is clear that the four composite 

materials have distinct structure and that all materials have the nanoplatelets well dispersed and 

randomly oriented in the epoxy matrix. 

 

TEST METHODS 

 

Three test methods were used to determine the mechanical properties of the four composite 

materials and the neat epoxy material, Dynamical Mechanical Analysis (DMA), quasi-static 

tensile testing, and nanoindentation.  In this section, the basic procedures for each test method is 

described.  Further details of the test methods and apparatus may be found in (Chasiotis, Chen 

and Odegard, 2004). 
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Dynamical Mechanical Analysis 

 

The DMA tests were conducted to determine the dynamic moduli of each material system.  

These tests were based on well-established procedures (Kampf, 1986; Menard, 1999).  The 

specimens had nominal dimensions of 50×12×5 mm and were tested using the standard three-

point bend configuration at room temperature.  The tests were conducted with a harmonic 

amplitude and frequency of 20 µm and 50 Hz, respectively.  Three tests were performed for each 

of the five material systems and both storage, E′ , and loss modulus, E′′ , were calculated from 

the measured data.  It is important to note that these were bulk-level tests.  That is, the measured 

properties from the DMA represent the overall viscoelastic properties of the entire sample and 

cannot distinguish the relative influence of each material constituent. 

 

Quasi-Static Tensile Testing 

 

Quasi-static tensile tests were also performed on bulk samples with the same dimensions as those 

of the DMA specimens.  These tests were used to determine the Young’s modulus and Poisson’s 

ratio of each of the specimens.  A constant displacement rate of 0.3 mm/min was applied to the 

specimens with a standard tensile-testing machine.  A laser extensometer was used to measure 

the axial strain in the specimen, while strain gages were used to measure the transverse strain.  

The axial strain was used for the calculation of Young’s modulus, and both axial and transverse 

strains were used for the calculation of Poisson’s ratio.  The Young’s modulus and Poisson’s 

ratio were determined from the initial linear segments of the stress-strain data. Stress was 

calculated based on the measured load and the specimen’s average cross-section prior to test.  

Three replicates were used for each material.   

 

Nanoindentation 

 

Dynamic nanoindentation tests were performed at room temperature on samples of the five 

materials using a previously established procedure (Odegard, Gates and Herring, 2005).  The 

Continuous Stiffness Measurement method, developed by the instrument manufacturer, was used 
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for all tests. This method allowed for a continuous measure of the dynamic stiffness of the 

material throughout the loading process by using a continuous low magnitude oscillating force 

superimposed onto the high magnitude quasi-static force applied at the nanoindenter tip.  The 

displacement response was measured at the same frequency as the applied oscillating force, and 

any resulting phase lag between applied force and measured response was related to the viscous 

damping of the material using standard concepts of linear viscoelasticty.  The harmonic 

amplitude and frequency of the nanoindenter tip oscillations was 10 nm and 50 Hz, respectively.  

The maximum displacement of the tip into the material was limited to 2 µm.  The storage 

modulus, E′ , and loss modulus, E′′ , were determined using the nanoindentation data and the 

expressions 

 

 
2 2
S P D PE E

A A
ω′ ′′= =

β β
 (1) 

 

where S and D are the contact stiffness and damping of contact, respectively, ω is the harmonic 

frequency of the nanoindenter tip, A is the projected contact area, P is the applied force, and β is 

the tip-related constant.  The values of S and D are determined empirically by calibration of the 

test apparatus, the projected contact area, A, was determined using a method described elsewhere 

(Odegard, Gates and Herring, 2005), and β is equal to 1.034 for the Berkovich tip, which was 

used in this study.  For illustrative purposes, Figure 5 shows an AFM image of the residual 

indentation in the epoxy material after a completed test.  Comparison of the size of the 

indentation in Figure 5 with the sizes of reinforcement in the composite samples in Figures 1-4 

reveals that the span of the nanoindentation and the nanoplatelet sizes are similar with both on 

the µm-length scale. 

 

MICROMECHANICS MODEL 

 

The viscoelastic properties of the four composite materials were predicted by using a 

micromechanics model that incorporated the individual viscoelastic properties of the graphite 

and epoxy constituents.  The micromechanics-based Mori-Tanaka method (Benveniste, 1987; 
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Mori and Tanaka, 1973) was used in conjunction with the elastic-viscoelastic correspondence 

principle (Brinson and Lin, 1998).  To implement this model for the graphite nanoplatelet/epoxy 

composite, it was assumed that the nanoplatelets were randomly-oriented, oblate-spheroids that 

were perfectly bonded to the surrounding matrix (Figure 6).  Given these assumptions, the 

composite complex modulus is 

 

 ( )( ) 1* * * * *
m m p p p m p pc c c c

−
= + +C C C A I A  (2) 

 

where cp and cm are the nanoplatelet and matrix volume fractions, respectively, *
pC   and *

mC  are 

the complex stiffness tensors of the nanoplatelets and matrix, respectively, I is the identity 

tensor, the angle-brackets indicate a nanoplatelet-orientation average, and *
pA  is the complex 

dilute strain-concentration tensor of the nanoplatelets.  The complex quantities in Equation (2) 

and throughout this paper can be expressed in terms of real (storage, time-independent) and 

imaginary (loss, time-dependent) components.  For example, the complex stiffness tensor of the 

composite is 

 

 * i′ ′′= +C C C  (3) 

 

where ′C  and ′′C  are the composite storage and loss stiffness tensors, respectively.  The 

complex dilute strain-concentration tensor in Equation (2) is 

 

 ( ) ( )
11* * * * *

p m p m

−−⎡ ⎤= + −⎢ ⎥⎣ ⎦
A I S C C C    (4) 

 

where S* is the complex Eshelby tensor.  The complex Eshelby tensor is determined by applying 

the elastic-viscoelastic correspondence principle to the Eshelby tensor for elastic composites 

(Eshelby, 1957; Mura, 1982), which yields the individual terms for the tensor 
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where ν* is the complex Poisson’s ratio; a1 = a2 > a3 are the principle half-axes of the oblate 

spheroid inclusion (Figure 6); * * *
ijkl jikl ijlkS S S= = ; all other non-zero components are obtained by 

cyclic permutation of (1,2,3); the components which cannot be obtained by the cyclic 

permutation are zero; and 
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 (6) 

 

For three-dimensional, randomly-oriented, nanoplatelet composite materials, the orientation 

average of an arbitrary forth-order tensor, T, associated with the isotropic material symmetry is 

 

 ( ) ( )2
3ijkl ij kl ik jl il jkT ⎛ ⎞= = κ − µ δ δ + µ δ δ + δ δ⎜ ⎟

⎝ ⎠
T  (7) 

 

where i,j,k,l = 1,2,3; the indicial summation convention is used; δij is the Kronecker delta; and 
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1
9

1 1
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iijj

ijij iijj

T

T T

κ =

⎛ ⎞µ = −⎜ ⎟
⎝ ⎠

 (8) 

 

Therefore, from Equations (7) and (8), T  is isotropic. 

 

The properties of the constituent materials used in this model are shown in Table 1.  It was 

assumed that the epoxy matrix was isotropic, with * * *
11 22 33C C C= = , * * *

23 13 12C C C= = , and 

* * *
44 55 66C C C= = .  It was also assumed that the graphite nanoplatelets were linear-elastic, with the 

classic transversely-isotropic graphite mechanical properties being used (Kelly, 1981), where the 

x3 axis is perpendicular to the graphene plane.  The storage and loss moduli, E′  and E′′ , 

respectively, of the epoxy material were those determined via DMA testing described previously.  

It was assumed that the storage shear modulus of the epoxy, G′ , was equal to the static shear 

modulus, which was computed using the Young’s modulus and Poisson’s ratio determined via 

the quasi-static tensile testing.  The loss shear modulus, G′′ , was determined using (Ferry, 1980) 

 

 E Gtan
E G

′′ ′′
δ = =

′ ′
 (9) 

 

With these assumptions, it was possible to uniquely determine all of the components of the 

complex stiffness tensors of the nanoplatelets and polymer using the elastic-viscoelastic 

correspondence principle.   

 

For the complex Eshelby tensor, the complex material properties of the epoxy and the assumed 

shape of the nanoplatelets were used in Equations (5) and (6).  It was assumed that the principle 

half-axes a1 and a2 were equal to half of the total length (radius) of the nanoplatelets.  Therefore, 

for the 1 µm-sized and 15 µm-sized nanoplatelets, a1 and a2 were 0.5 µm and 7.5 µm, 

respectively.  From AFM images of the material, such as that shown in Figures 1-4, it was 
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determined that the graphite nanoplatelets had a thickness of about 0.5 µm for the 1 µm 

nanoplatelets and 1 µm for the 15 µm nanoplatelets.  Therefore, a3 was 0.25 µm and 0.5 µm for 

the 1 µm and 15 µm-sized nanoplatelets, respectively. 

 

At this point, some of the possible influences of the model assumptions are discussed.  First, 

previous studies have shown that the mechanical properties of composites with nanometer-sized 

reinforcement can be modeled using a multi-scale equivalent-continuum modeling approach 

(Odegard, Frankland and Gates, 2003; Odegard, Gates, Nicholson, 2002; Odegard, Gates, Wise, 

2003). This type of modeling approach requires coupled atomistic and continuum modeling 

techniques.  However, because the smallest dimension of the nanoplatelet is 0.5 µm, which has 

been demonstrated to be large enough to be modeled directly using micromechanics (Odegard, 

Clancy and Gates, 2005), the fully coupled approach is not employed in the current research.  

Secondly, it is recognized that the assumption of perfect bonding between the nanoplatelets and 

epoxy matrix could potentially lead to discrepancies in the magnitudes of moduli determined 

from modeling and experiment.  However, because the relative quality of the actual bonding 

between the reinforcement and matrix in the fabricated specimens is not known, the simple 

assumption of perfect bonding was adopted.  This assumption should not influence the trends in 

the predicted moduli data with respect to reinforcement size and volume fraction. 

 

RESULTS AND DISCUSSION 

 

The bulk and localized storage moduli of the neat epoxy and four composite materials measured 

in the DMA and nanoindentation experiments and the associated values predicted by the model 

are shown in Figure 7.   For completeness, the Young’s moduli of the neat epoxy and three of the 

composite materials as measured via the tensile tests are also shown in Figure 7.  The bulk and 

localized loss moduli of the composite materials measured through DMA and nanoindentation 

experiments and the corresponding values predicted by the model are shown in Figure 8.  The 

error bars shown for the experimental data in Figures 7 and 8 represent the standard deviation of 

the mean (standard error) for the repeat tests.   
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The results presented in Figure 7 indicate that there is reasonable agreement between storage 

modulus for all of the experimental tests.  For all three experimental sets of data, the storage 

modulus (or Young’s modulus for the tensile tests) increases with an increasing nanoplatelet 

volume fraction, as expected.  This trend is confirmed by results from studies on graphite 

platelet/Polyethylene composites (Thongruang, Balik and Spontak, 2002) and graphite 

nanoplatelet/epoxy composites (Fukushima and Drzal, 2002).  The only exception to this 

observation is the 0.5% volume fraction specimen with 15 µm nanoplatelets, for which the 

storage modulus from nanoindentation is about equal to that of the epoxy material.  The model 

confirms this overall trend, although the magnitudes of the predicted values of storage modulus 

are lower than the measured values.  Because of the lower magnitudes of the predicted storage 

moduli, it appears that for the 0.5% volume fraction specimen with 1 µm nanoplatelets, the 

model shows closer agreement with the tensile test and DMA data than the nanoindentation data.  

For the other three composites, it appears that the predicted storage moduli have the closest 

agreement with the nanoindentation tests.  This does not necessarily indicate that, in general, the 

model predicts storage moduli that are in closer agreement with the nanoindentation data, but 

that the magnitudes of the predicted data tend to be lower than those of the experimental data, 

while the trends are similar.   

 

For the DMA and tensile test data, representing bulk measurements, there is no clear effect of 

increasing the nanoparticle diameter on the measured storage modulus, given the standard error 

of the experiments.  Similarly, there is no clear trend in the predicted data for increases in 

nanoparticle diameter.  The nanoindentation data, representing localized measurements, shows a 

very clear decrease in measured storage modulus with increasing nanoplatelet diameter.  For the 

1 µm diameter nanoplatelets, the storage modulus values from the nanoindentation are very close 

to those measured with the DMA.  For the 15 µm-diameter nanoplatelets, the measured storage 

moduli from nanoindentation are close to those of the epoxy material.   

 

All of these results in reference to Figure 7 lead to the assumption that because the DMA, tensile 

test, and modeling data represent bulk-level behavior of the composite materials, and the 

nanoindentation data is the result of local-level behavior (on the µm-length scale), the 

nanoindenter must be sampling mostly the bulk polymer material in the 15 µm-diameter 



 12

specimens, and sampling a mixture of polymer and nanoplatelet reinforcement in the 1 µm-

diameter nanoplatelets specimens.  To substantiate this assumption consider that for a given 

nanoplatelet volume fraction, a 15 µm-sized indentation tip (Figure 5) has a higher probability of 

indenting a pure polymer material with 15 µm-diameter nanoplatelets than with 1 µm-diameter 

nanoplatelets.  Therefore, for the nanoindenter tip size, tip geometry, and nanoplatelet volume 

fractions considered in this study, composites materials with nanoplatelet sizes below 1 µm 

represent a statistically homogeneous medium for nanoindentation testing.  Conversely, for 

composite materials with nanoplatelet sizes above 15 µm, nanoindentation is capable of 

examining the individual phases in the material thereby providing data on localized properties. 

 

Examining the data in Figure 8, it is clear that the loss moduli measured with nanoindentation are 

at least 50% higher than those measured with the DMA for the four composite materials and the 

epoxy. Furthermore, the predicted values are in much better agreement with the DMA data than 

for the nanoindentation data.  The latter trend is expected because the model used as input the 

epoxy viscoelastic properties obtained from DMA tests.   

 

While the experimental data show an increase in loss modulus with increased nanoplatelet 

volume fraction, the model does not predict this trend with the 1 µm nanoplatelets.  Therefore, 

this disagreement between experiment and modeling indicate that the model does not correctly 

establish the necessary relationship between loss modulus and nanoplatelet volume fraction for 

these materials.  However, both experiments and model indicate an increase in loss modulus with 

increased nanoplatelet diameter for a given nanoplatelet volume fraction. When comparing the 

test data to the predicted values, it is also useful to note that the room temperature loss modulus 

for these materials is substantially lower than the corresponding storage modulus and therefore 

represents data at the lower bound of the resolution for the instrumentation. 

 

SUMMARY 

 

In this study, a micromechanical model based on the Mori-Tanaka method and the viscoelastic 

correspondence principle was developed to predict the viscoelastic properties of graphite 

nanoplatelet/epoxy composites as a function of platelet volume fraction and diameter. Bulk static 
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and viscoelastic properties were measured for all materials using tensile tests and dynamic 

mechanical analysis (DMA) tests methods respectively. Local viscoelastic properties were 

measured using nanoindentation test methods. The predicted storage and loss modulus was 

compared to the experimentally measured viscoelastic and static properties and thus facilitated 

the interpretation of the differences between local and bulk measurement techniques.   

 

The predicted results and all three experimental techniques indicate that for increasing volume 

fraction of nanoplatelets, the storage modulus increases, as expected.  Based on the bulk 

properties from DMA, tensile tests, and comparing to model predictions, there is no clear 

relationship between nanoparticle diameter and storage modulus.  The results also indicate that 

for composites materials with nanoplatelet diameters below 1 µm, localized nanoindentation 

tests measure storage moduli that are equal to those of the bulk composite, while for composites 

with nanoplatelet sizes above 15 µm, and given the relatively low volume fraction of 

reinforcement, nanoindentation measurements closely match the properties of the epoxy 

material.  

 

Therefore, for nanostructured composite materials with local reinforcement size on the order of 

15 µm or greater, the nanoindentation test method used in this study may be suitable for 

providing localized material properties associated with individual phases or constituents. This 

type of practical limit on resolution and the relationship to material structure (i.e. size of 

reinforcement and volume fraction), illustrates the need for careful selection of appropriate 

modeling and measurement methods when characterizing the local behavior of nanostructured 

materials.    
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Table 1.  Viscoelastic properties of constituent materials in GPa 

Property Graphite Epoxy 

11
*C  106.00 4.30 + 0.16i 

12
*C  18.00 2.12 + 0.08i 

13
*C  1.50 2.12 + 0.08i 

33
*C  3.65 4.30 + 0.16i 

44
*C  0.45 1.09 + 0.04i 
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10 µm10 µm10 µm
 

Figure 1.  AFM image of graphite nanoplatelet/epoxy composite with a 0.5% volume fraction of 
1 µm diameter nanoplatelets 
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Figure 2.  AFM image of graphite nanoplatelet/epoxy composite with a 0.5% volume fraction of 

15 µm diameter nanoplatelets 
 



 19

10 µm10 µm10 µm
 

 
Figure 3.  AFM image of graphite nanoplatelet/epoxy composite with a 3.0% volume fraction of 

1 µm diameter nanoplatelets 
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Figure 4.  AFM image of graphite nanoplatelet/epoxy composite with a 3.0% volume fraction of 

15 µm diameter nanoplatelets 
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15 µm15 µm
 

 
Figure 5.  AFM image of nanoindentation site in the epoxy material 
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Figure 6.  Micromechanical modeling of graphite nanoplatelet/epoxy composite 
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Figure 7.  Storage and Young’s moduli for graphite nanoplatelet/epoxy composites. (Note that 
tensile test data for the 3.0%, 1µm data is not available) 
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Figure 8.  Loss moduli for graphite nanoplatelet/epoxy composites 

 

 

 
 
 


